
18/9/2007 I2A 98 slides 10 1 Richard Bornat
Dept of Computer Science

A dictionary interface.
interface Dictionary {
 public Data search(Key k);
 public void insert(Key k, Data d);
 public void delete(Key k);
}

A dictionary behaves like a many-to-one function.

The search method returns (a reference to) the data
which the dictionary associates with key k, or a null
reference if there is no such data.

The insert method adds key k and its data to the
dictionary; it will overwrite any earlier data
associated with the same key.

The delete method changes the dictionary so that
searching for key k gives a null reference.

18/9/2007 I2A 98 slides 10 2 Richard Bornat
Dept of Computer Science

Trees.

A rooted directed tree is a structure like this:
a

b c

d e f
g h

The circles are nodes of the tree; the lines are edges.

Sometimes you will see vertex in place of node or arc in place
of edge. Strictly, vertex goes with edge and node with arc, but I
prefer it my way.

This is a directed tree because the edges have a
direction from one node to another, indicated here by
arrows.

A node (a, b, c, d, e, f, g, h) can have any number of
edges leaving it, including 0.

A leaf-node (d, e, f, g, h) is a node with no edges
leaving it.

18/9/2007 I2A 98 slides 10 3 Richard Bornat
Dept of Computer Science

The root (a) has no edge entering it; all other nodes
and leaves have exactly one edge entering them. A
rooted tree has only one root.

A subtree starts at every node, with that node as its
root.

As a consequence of the definition, there is always
exactly one way from the root of a tree to any node in
the tree.

A tree is a special kind of graph. Graphs will be discussed
later.

Computer scientists always draw their trees with the root at
the top. Except for proof trees ...

We often say that a node is the parent of the nodes to
which its outgoing edges lead, and those nodes as
children nodes. The children of a particular node are
sibling nodes.

We often talk about the subtrees of a tree, meaning
the subtrees which start at the children of the root.

18/9/2007 I2A 98 slides 10 4 Richard Bornat
Dept of Computer Science

Computer scientists usually deal with rooted,
directed, ordered trees in which the order in which the
edges appears matters. For example, these two rooted,
directed, ordered trees are distinct:

b

d e f

b

de f

The only difference is the order of the edges (1st to d,
2nd to e, 3rd to f vs 1st to e, 2nd to d, 3rd to f).

As rooted directed trees they are the same: same root, same
children; as rooted directed ordered trees they are different:
same root, same children but children aren’t in the same
order.

Computer scientists don’t often think about other kinds of tree:
when we say ‘tree’ we usually mean rooted, directed, ordered
tree.

18/9/2007 I2A 98 slides 10 5 Richard Bornat
Dept of Computer Science

Binary trees.

A binary tree is a rooted directed ordered tree in
which each node has either 0, 1 or 2 children; the
ordering is established by distinguishing left and right
subtrees / children.

We distinguish between nodes which have a single
subtree according to whether it occurs on the right or
left. These are distinct binary trees:

a

b

a

b

Same root, same child, same number of children: but one has
its child on the left and the other has it on the right.

18/9/2007 I2A 98 slides 10 6 Richard Bornat
Dept of Computer Science

Binary dictionary trees.

BDTs are designed to make it easy to represent a
key!data database.

A BDT is either empty, is a leaf or is a twonode.

An empty BDT contains no information.

A leaf BDT contains a key plus its corresponding
data.

A twonode contains a key (but no data) plus a
reference to two BDTs.

and we shall see that it is convenient if neither of those sub-
trees is empty.

We exploit the edge-ordering in the tree by using a
version of the binary chop idea; the records in a BDT
are implicitly ordered by their keys.

18/9/2007 I2A 98 slides 10 7 Richard Bornat
Dept of Computer Science

Here is the interface which dictionary trees – BDTs or
B-trees – will provide:
interface DictTree {
 public Data search(Key k);
 public DictTree insert(Key k, Data d);
 public DictTree delete(Key k);
}

Here is the ‘wrapper’ which allows me to use
DictTrees as a kind of Dictionary:
class RecDict implements Dictionary {
 private DictTree t;
 public RecDict(DictTree init) { t = init; }
 public Data search(Key k); { return t.search(k); }
 public void insert(Key k, Data d) {
 t = t.insert(k,d);
 }
 public void delete(Key k); { t = t.delete(k); }
}

18/9/2007 I2A 98 slides 10 8 Richard Bornat
Dept of Computer Science

Searching in a Binary Dictionary Tree.

I define an abstract class of BDTs in order that
they can share some semi-private information:
abstract class BDT implements DictTree {
 abstract public Data search(Key k);
 abstract public DictTree insert(Key k, Data d);
 abstract public DictTree delete(Key k);
}

Empty trees don’t have much to do:
class EmptyBDT extends BDT {
 public Data search(Key k); { return null; }
 ...
}

Leaves store a key and its data:
class LeafBDT extends BDT {
 private Key k; private Data d;
 public Data search(Key k1); {
 return k.equals(k1) ? d : null;
 }
 ...
}

18/9/2007 I2A 98 slides 10 9 Richard Bornat
Dept of Computer Science

Twonodes contain a key value which they use – as in
binary chop – to halve the domain of search.

I have chosen to build my trees so that (i) all the keys
in the left subtree are ("k); (ii) (k<) all the keys in the
right subtree; (iii) there is no data at the twonodes.
class TwoBDT extends BDT {
 private Key k; private DictTree left, right;
 public Data search(Key k1); {
 return k1.lesseq(k) ? left.search(k1) :
 right.search(k1);
 }
}

My convention is that k1.lesseq(k) means k1 k" . That makes
the code easier to read, even though it may not be the same
convention as that used in other Java classes.

Now provided that the tree is approximately balanced
– that is, the left subtree is always about as leafy as
and about the same height as the right – the search
space will be cut in half at each twonode, and we
automatically get O Nlg() search performance.

18/9/2007 I2A 98 slides 10 10 Richard Bornat
Dept of Computer Science

Inserting in binary dictionary trees.

Empty trees always turn into leaves on insertion:
class EmptyBDT extends BDT {
 public Data search(Key k); ...
 public DictTree insert(Key k, Data d) {
 return new LeafBDT(k,d);
 }
 ...
}

Leaves may re-assign their data or turn into twonodes:
class LeafBDT extends BDT {
 private Key k; private Data d;
 public LeafBDT(Key k0, Data d0) { k=k0; d=d0; }
 public Data search(Key k1); ...
 public DictTree insert(Key k1, Data d1) {
 if k.equals(k1) { d=d1; return this; }
 else {
 DictTree t = new LeafBDT(k1,d1);
 return k1.lesseq(k) ? new TwoBDT(t,k1,this)
 : new TwoBDT(this,k,t);
 }
 }
 ...
}

Leaf nodes decide the keys for twonodes: they
establish the ordering left key right" < between key
and subtrees.

18/9/2007 I2A 98 slides 10 11 Richard Bornat
Dept of Computer Science

Insertion into twonodes is remarkably simple:
class TwoBDT extends BDT {
 private Key k; private DictTree left, right;
 protected TwoBDT(DictTree l0, Key k0, DictTree r0) {
 left=l0; k=k0; right=r0;
 }
 public Data search(Key k1); ...
 public DictTree insert(Key k1, Data d1); {
 if (k1.lesseq(k)) left=left.insert(k1,d1);
 else right=right.insert(k1,d1);
 return this;
 }
}

Insertion into a twonode, provided that the tree is
approximately balanced, will make about O Nlg()
probes and finish either with the creation of a leaf
node, an assignment to a leaf node or creation of a
leaf node and a twonode.

That is far better than the worst case of hash
addressing or the average case of binary chop.

But insertion can make a balanced tree unbalanced
and produce O N() search and insert performance.

18/9/2007 I2A 98 slides 10 12 Richard Bornat
Dept of Computer Science

Insert <1,a> into an empty tree:
<1,a>

Then insert <2,b>:
1

<1,a> <2,b>

Insert <3,c>:
1

<1,a>

<2,b>

2

<3,c>

Insert <4,d>:
1

<1,a>

<2,b>

2

<3,c>

3

<4,d>

... and so on.

Insertion, as implemented above, is not yet exactly what is required.

18/9/2007 I2A 98 slides 10 13 Richard Bornat
Dept of Computer Science

If we insert the same data in a different order we can
get a better result:

First insert <2,b>:

<2,b>

Then <3,c>:

<2,b>

2

<3,c>

Then <1,a> and <4,d> in either order:

2

<1,a>

1

<2,b> <3,c>

3

<4,d>

But it would be oppressive to have to build our
dictionaries in exactly the right order.

We shall see that is possible to build balanced trees, by using a
more sophisticated insertion method.

18/9/2007 I2A 98 slides 10 14 Richard Bornat
Dept of Computer Science

Deletion in binary dictionary trees.

Deletion from an empty tree has no effect:
class EmptyBDT extends BDT {
 public Data search(Key k); ...
 public DictTree insert(Key k, Data d) ...
 public DictTree delete(Key k) { return this; }
 ...
}

Deletion in a leaf may make it empty:
class LeafBDT extends BDT {
 private Key k; private Data d;
 public LeafBDT(Key k0, Data d0) ...
 public Data search(Key k1); ...
 public DictTree insert(Key k1, Data d1) ...
 public DictTree delete(Key k1) {
 if (k.equals(k1)) return new EmptyBDT();
 else return this;
 }
 ...
}

18/9/2007 I2A 98 slides 10 15 Richard Bornat
Dept of Computer Science

Deletion from a twonode is remarkably simple:
class TwoBDT extends BDT {
 private Key k; private DictTree left, right;
 protected TwoBDT(...) ...
 public Data search(Key k1); ...
 public DictTree insert(Key k1, Data d1); ...
 public DictTree delete(Key k1) {
 if (k1.lesseq(k)) left=left.delete(k1);
 else right=right.delete(k1);
 return this;
 }
}

Deletion can produce even nastier effects than
insertion. Because a leaf may be replaced by an empty
bdt, it’s possible with judicious deletions to make a
tree even worse than unbalanced:

1

<> 2

<3,c>

3<>

<>

18/9/2007 I2A 98 slides 10 16 Richard Bornat
Dept of Computer Science

Luckily, this is easy to fix:
class TwoBDT extends BDT {
 private Key k; private DictTree left, right;
 protected TwoBDT(...) ...
 public Data search(Key k1); ...
 public DictTree insert(Key k1, Data d1); ...
 public DictTree delete(Key k1) {
 if (k1.lesseq(k)) left=left.delete(k1);
 else right=right.delete(k1);
 return left instanceof EmptyBDT ? right :
 right instanceof EmptyBDT ? left : this;
 }
}

This keeps the trees maximally leafy, but it is obvious
that deletion can still take a balanced tree and prune it
to make it as unbalanced as insertion can.

It would be impossibly oppressive to have to delete things from our
dictionaries in the right order!

18/9/2007 I2A 98 slides 10 17 Richard Bornat
Dept of Computer Science

AVL trees: height-balanced binary trees.
Adelson-Velskii and Landis invented this data structure in the
early 1960s: see Weiss for the reference.

There are lots of other kinds of balanced binary trees: see
Weiss chapter 18.

A binary dictionary tree can’t be perfectly balanced
unless it contains a number of leaves which is a power
of 2.

The height (sometimes depth) of a rooted tree is the
length of the longest path from root to leaf.

An AVL tree is height-balanced because

• at every twonode the height of the
subtrees differs by at most 1.

Careless insertion or deletion in a height-balanced
tree could make it unbalanced.

A-V & L invented a way of rebalancing a tree which
has become just slightly unbalanced in this way.

18/9/2007 I2A 98 slides 10 18 Richard Bornat
Dept of Computer Science

Performance of AVL trees.

Searching in AVL trees is exactly like searching in a
BDT.

If a tree is height-balanced, is it balanced? Answer (a)
no; (b) we still get worst case O Nlg() search
performance.

I neglect the case of the empty tree, and I rely on the fact that
my non-empty AVL trees will never contain empty subtrees.

My analysis is NOT the same as Weiss’s, because my AVL
trees are a little different from his: no empty subtrees for me,
all the data at the leaves.

For search performance, the worst case will be a tree
with the fewest leaves for its height.

Clearly a tree of height 0 always has 1 leaf and a tree
of height 1 always has 2.

A twonode of height h, in the worst case, will have
one subtree of height h #1, and one of height h # 2.
So minleaves minleaves minleavesh h h() = #() + #()1 2

That’s obviously a Fibonacci series: 1, 2, 3, 5, 8, ...

18/9/2007 I2A 98 slides 10 19 Richard Bornat
Dept of Computer Science

Fibonacci numbers aren’t powers of 2.

But they are powers of something. Weiss shows
(pp218 and 509) that Fibi

i$ % 5 where % is a
constant. Thus in an AVL tree of height h containing
N nodes, N K h& % where K is a constant factor. It
follows, taking logarithms of both sides, that
log log' %N h K& + . Then, because logarithms of
different bases differ by a constant multiplier (slides
4), we have h N K" #lg lg log2 % % .

Height is logarithmic in the worst case, with some
constant of proportionality.

Exact analysis shows (Weiss p509) that an height-
balanced binary tree can have a height about 44%
greater than an optimally-balanced binary tree.

AVL trees aren’t optimally balanced, but they are
at most a constant factor worse than an optimally-
balanced binary tree. We are guaranteed O Nlg()

search performance, if insertion and deletion
preserve height-balance.

18/9/2007 I2A 98 slides 10 20 Richard Bornat
Dept of Computer Science

Implementation of AVL trees.
abstract class AVL implements DictTree{
 abstract protected int height();
 abstract public Data search(Key k);
 public DictTree insert(Key k, Data d); {
 return ainsert(k,d);
 }
 public DictTree delete(Key k); {
 return adelete(k);
 }
 abstract protected AVL ainsert(Key k, Data d);
 abstract protected AVL adelete(Key k);
}

The height of an empty tree or a leaf is fixed at 0:
class EmptyAVL extends AVL {
 protected int height(); { return 0; }
 ...
}

class LeafAVL extends AVL {
 protected int height(); { return 0; }
 ...
}

18/9/2007 I2A 98 slides 10 21 Richard Bornat
Dept of Computer Science

There’s an obvious recursive calculation of the height
of a twonode: 1+max(height of left subtree, height of
right subtree).

This calculation will be needed when trees are
rebalanced; performed recursively it would be an
O N() calculation (because it has to visit every leaf in
the tree)

Therefore we cache the result to avoid recalculation:
class TwoAVL extends AVL {
 private int h;
 private void calcheight() {
 h = 1+max(left.height(),right.height())
 }
 protected int height() { return h; }
 protected TwoAVL(Key k0, AVL l0, AVL r0) {
 k=k0; left=l0; right=r0; calcheight();
 }
 ...
}

We call calcheight when a twonode is created and
again when its height changes because of insertion or
deletion.

18/9/2007 I2A 98 slides 10 22 Richard Bornat
Dept of Computer Science

Insertion / deletion in an empty tree or a leaf is
exactly as with BDTs, above.

Insertion and deletion in twonodes is similar to other
BDTs, with the exception of a balance operation
which makes sure that the height-balance property is
preserved:
class TwoAVL extends BDT {
 ...
 protected AVL ainsert(Key k1, Data d1); {
 if (k1.lesseq(k)) left=left.insert(k1,d1);
 else right=right.insert(k1,d1);
 return balance();
 }
 public AVL adelete(Key k1) {
 if (k1.lesseq(k)) left=left.delete(k1);
 else right=right.delete(k1);
 return left instanceof EmptyAVL ? right :
 right instanceof EmptyAVL ? left :
 balance();
 }
 ...
}

The fun is all in the balance method.

18/9/2007 I2A 98 slides 10 23 Richard Bornat
Dept of Computer Science

Balancing an AVL tree.

Insertion doesn’t always increase, nor deletion always
decrease, the height of a tree.

So we check first to see if the tree is already balanced:
private AVL balance() {
 int lh=left.height(), rh=right.height();
 if (abs(lh-rh)<=1) return this;
 else ...
}

If we don’t have balance, then the left may be too
high, or it may be the right:
private AVL balance() {
 int lh=left.height(), rh=right.height();
 if (abs(lh-rh)<=1) return this;
 else
 if (lh-rh==2) ... // work on the left subtree
 else ... // work on the right subtree
}

The two cases are symmetrical, so I shall depict only
imbalance caused by a left subtree which is too high.

18/9/2007 I2A 98 slides 10 24 Richard Bornat
Dept of Computer Science

This is the problem:

kroot

H+2
H

left right

Balance has been disturbed; to understand how to
restore it, we must look at the various ways in which
the left subtree might be built.

It can’t possibly be empty or a leaf.

It might be built out of an H subtree and an H +1
subtree, or out of two H +1 subtrees, or an H +1 and
an H subtree.

In two of these cases rebalancing is very easy; the
other case can be handled by using the same trick
more than once.

18/9/2007 I2A 98 slides 10 25 Richard Bornat
Dept of Computer Science

Case 1: higher on the outside.

Suppose that the situation is this:
kroot

H

right

kleft

H+1

left.left

H

left.right

Then this tree preserves the ordering of the original,
but it’s height-balanced:

kroot

H

right

kleft

H+1

left.left

H

left.right

height H+1

height H +2

18/9/2007 I2A 98 slides 10 26 Richard Bornat
Dept of Computer Science

The operation which changes one tree into the other is
very simple, and it’s easy to program:
protected AVL liftLeftChild() {
 TwoAVL oldleft=(TwoAVL)left;
 left=oldleft.right; oldleft.right=this;
 calcheight(); oldleft.calcheight();
 return oldleft;
}

There’s a symmetrical liftRightChild:
protected AVL liftRightChild() {
 TwoAVL oldright=(TwoAVL)right;
 right=oldright.left; oldright.left=this;
 calcheight(); oldright.calcheight();
 return oldright;
}

The technique is called rotation or pointer-
swinging. These methods each perform a single

rotation.

18/9/2007 I2A 98 slides 10 27 Richard Bornat
Dept of Computer Science

Case 2: neither is higher.

The first case was easy – so is this:
kroot

H

right

kleft

H+1

left.left left.right

H+1

liftLeftChild will once again give us a height-balanced
tree:

kroot

H

right

kleft

H+1

left.left

left.right

H+1

height H +3

height H+2

18/9/2007 I2A 98 slides 10 28 Richard Bornat
Dept of Computer Science

So we can deal with four cases of imbalance:
private AVL balance() {
 int lh=left.height(), rh=right.height();
 if (abs(lh-rh)<=1) return this;
 else
 if (lh-rh==2) {// work on the left subtree
 if (left.left.height()>=left.right.height())
 return liftLeftChild();
 else ...
 }
 else { // work on the right subtree
 if (right.right.height()>=right.left.height())
 return liftRightChild();
 else ...
 }
}

18/9/2007 I2A 98 slides 10 29 Richard Bornat
Dept of Computer Science

Case 3: higher on the inside.
kroot

H

right

kleft

H+1

left.left

H

left.right

This one needs different treatment, because
liftLeftChild doesn’t give a height-balanced tree:

kroot

H

right

kleft

H+1

left.left

H

left.right

height H+2

unbalanced

18/9/2007 I2A 98 slides 10 30 Richard Bornat
Dept of Computer Science

The solution is quite simple, but to see it we have to
look at the structure of the middle subtree.

It can’t be a leaf.

It can be made up of two H subtrees, or an H and an
H #1:

kroot

H

right

kleft

left.left

H

kmiddle

H/H-1

left.right.left left.right.right

H/H-1

18/9/2007 I2A 98 slides 10 31 Richard Bornat
Dept of Computer Science

In either case, the same rearrangement produces a
height-balanced result:

kroot

H

rightleft.left

H

kmiddle

left.right.right

H/H-1

kleft

H/H-1

left.right.left

height H+1height H+1

height H +2

18/9/2007 I2A 98 slides 10 32 Richard Bornat
Dept of Computer Science

It looks tricky, but it’s just a couple of rotations. First
we change the left subtree by lifting its right child:

kroot

H

right

kleft

left.left

H

kmiddle

H/H-1

left.right.left left.right.right

H/H-1

 This may be an unbalanced tree, but that doesn’t matter
because there’s another step to come.

Then lifting the left subchild solves the problem:

kroot

H

rightleft.left

H

kmiddle

left.right.right

H/H-1

kleft

H/H-1

left.right.left

height H+1height H+1

height H +2

18/9/2007 I2A 98 slides 10 33 Richard Bornat
Dept of Computer Science

So this is the complete solution to balancing AVL
trees:
private AVL balance() {
 int lh=left.height(), rh=right.height();
 if (abs(lh-rh)<=1) return this;
 else
 if (lh-rh==2) {// work on the left subtree
 if (left.left.height()<left.right.height())
 left = ((TwoAVL)left).liftRightChild();
 return liftLeftChild();
 }
 else { // work on the right subtree
 if (right.right.height()<right.left.height())
 right=((TwoAVL)right).liftLeftChild();
 return liftRightChild();
 }
}

And that is all there is to it. Quite a bit of analysis has
guaranteed that this very simple code preserves
height-balance.

The code chooses between single rotation (cases 1
and 2) and double rotation (case 3).

18/9/2007 I2A 98 slides 10 34 Richard Bornat
Dept of Computer Science

Insert/delete performance in AVL trees.

The search for a position to insert or delete takes
O Nlg() time.

The code which looks at the height of the subtrees to
decide whether and how to rotate is O 1(), thanks to
calcheight.

The rotations are O 1() – a couple of assignments each.

So the work to balance the tree is O 1() at each level,
and it is performed only on the nodes on the path
from root to insert/delete position.

Therefore insert/delete performance is O Nlg(), as
required.

18/9/2007 I2A 98 slides 10 35 Richard Bornat
Dept of Computer Science

How balanced is height-balanced?

The height of a tree is the length of the longest path it
contains.

What is the length of the shortest path in an AVL
tree?

In the worst case a tree of height h has a subtree of
height h #1 and another of height h # 2. The shortest
path will obviously be
shortestpath shortestpathh h() = + #()1 2 .

So the shortest path in a tree of height 2 is 1, the
shortest path in a tree of height 4 is 2, the shortest
path in a tree of height 6 is 3, ... obviously
shortestpath h h() $ ÷ 2.

AVL trees can look very unbalanced: the local one-
step height difference doesn’t give global height
balancing.

Despite that, we still get logarithmic performance.

18/9/2007 I2A 98 slides 10 36 Richard Bornat
Dept of Computer Science

B-trees.

A B-tree is a rooted, directed tree.

A leaf is an array of up to L <key,data> pairs,
searched by binary chop.

A non-leaf (an internal node) is an array of up to I
<key,subtree> pairs, also searched by binary chop.

In order that binary chop works on internal nodes, the
<key,subtree> pairs are arranged so that (i) keyi "()
all the nodes in subtree i; (ii) all the nodes in subtree
i #1 are <()keyi

In practice K and L are chosen so that a node just fits
into a disc block (e.g. 8192 bytes); a subtree reference
is then just a disc block number (4 bytes, 8 bytes,
whatever).

We can’t really implement it in Java, because Java doesn’t
give us control of array allocation, but we can pretend.

18/9/2007 I2A 98 slides 10 37 Richard Bornat
Dept of Computer Science

Implementation of B-trees.

An empty B-tree is just a leaf with no entries.

A leaf contains a count of its number of entries, a key
array and a data array.

An internal node contains a count of its number of
entries, a key array and a subtree array.

Insertion into a leaf is straightforward, until the leaf
becomes full: then insertion must make it split into
two half-full leaves and put the extra element in one
half or the other.

When a leaf splits the parent node – if there is one –
must insert a new <key, subtree> pair. This may cause
it to split also, and its parent must insert a new pair ...
and so on.

If the root splits then it must be replaced by a new
internal node which points to just the two halves of
the original root.

18/9/2007 I2A 98 slides 10 38 Richard Bornat
Dept of Computer Science

In order to limit the depth of the tree, which reduces
the number of disc-block reads required to search it,
we require that a leaf should always have L 2 entries,
and an internal node I 2 entries.

If deletion in a leaf reduces its entries too much, that
leaf can be combined, in its parent, with a neighbour
leaf. That may mean reduction of the number of
entries in the parent node.

If deletion in an internal node reduces its entries too
much, its parent may have to adjust.

Only the root node is allowed to have less than L 2
entries (if it’s a leaf) or I 2 entries (if it’s an internal
node).

Coding of B-trees is straightforward in principle, but fitting
them into an Object-Oriented notation like Java is tricky. So I
don’t discuss that bit (though I do append some details).

18/9/2007 I2A 98 slides 10 39 Richard Bornat
Dept of Computer Science

Illustrations of B-trees.

Weiss (p 541-544) has illustrations of B-trees, from
which I have copied a style.

Here is a small B-tree (I = 4, L = 5) with data values
not shown.

2
4
6

8
10
12
14
16

25
30
32
35

2 8 25

After insertion of 5, one of the leaves changes:

2
4
5
6

8
10
12
14
16

25
30
32
35

2 8 25

18/9/2007 I2A 98 slides 10 40 Richard Bornat
Dept of Computer Science

Insertion of 15 makes the middle leaf split, and the
parent must add an extra entry:

2
4
5
6

25
30
32
35

2 8 25

8
10
12

14
15
16

14

Insertion of 36 will fill the right-hand leaf. Then
insertion of 28 will make it split: the parent is full so
it must split as well; since the parent is the root we get
a new root.

2
4
5
6

25
28
30

2 8 25

8
10
12

14
15
16

14 32

32
35
36

2 14

18/9/2007 I2A 98 slides 10 41 Richard Bornat
Dept of Computer Science

If we delete 4 from the tree nothing happens except
that the left-hand leaf shrinks:

2
5
6

25
28
30

2 8 25

8
10
12

14
15
16

14 32

32
35
36

2 14

If we delete the first element in a node, its parent must
alter the key value it associates with that subtree. For
example, if we delete 25:

2
5
6

28
30

2 8 28

8
10
12

14
15
16

14 32

32
35
36

2 14

18/9/2007 I2A 98 slides 10 42 Richard Bornat
Dept of Computer Science

If deletion causes a node to shrink below the L ÷ 2 /
I ÷ 2 boundary, then the tree must be rebalanced.

Suppose that we delete 30. The tree would change to
the following:

2
5
6

28

2 8 28

8
10
12

14
15
16

14 32

32
35
36

2 14

The fourth leaf is now too small, but each of its
neighbours is above the L ÷ 2 boundary. We can
move an element to balance the tree:

2
5
6

16
28

2 8 16

8
10
12

14
15

14 32

32
35
36

2 14

18/9/2007 I2A 98 slides 10 43 Richard Bornat
Dept of Computer Science

If we delete 15 then the neighbour is too small to give
up a value:

2
5
6

16
28

2 8 16

8
10
12

14

14 32

32
35
36

2 14

But we can amalgamate with that neighbour:

2
5
6

14
16
28

2 8 14

8
10
12

32

32
35
36

2 14

18/9/2007 I2A 98 slides 10 44 Richard Bornat
Dept of Computer Science

This process can percolate up the tree, and eventually
the root may be reduced to a single-entry internal
node:

5
6
12

14
16
28

5 14 32

32
35
36

5

In which case the root can be replaced by its single
child:

5
6
12

14
16
28

5 14 32

32
35
36

18/9/2007 I2A 98 slides 10 45 Richard Bornat
Dept of Computer Science

Important facts about B-trees.

1. B-trees are always perfectly balanced, in that all
the path lengths are always equal.

This is because splitting only makes a tree wider; it will only
get deeper if the root splits, and then every path grows by one
step.

2. B-trees always have high branching ratios and
short paths.

This is provided that K and I are reasonably large: then there
are at most 2N K leaf nodes, a branching ratio of I ÷ 2 and
therefore a path length of log I N K÷ ()2 2 or
log log logI I IN K÷ ÷ ÷+ #()2 2 22 .

3. Short path lengths means few node-accesses (disc
block reads).

18/9/2007 I2A 98 slides 10 46 Richard Bornat
Dept of Computer Science

Key points
A dictionary is a mapping from keys to data: we are concerned about

search, insert and delete performance.

Hash addressing gives the best search performance when you can work
with arrays, but sometimes you can’t work with arrays.

Hash addressing gives poor worst-case insert and delete performance.

Rooted directed ordered trees are a recursive organisation of data, a
special kind of graph.

If we impose an ordering on the keys, we can use trees to implement
dictionaries.

Binary dictionary trees give O Nlg() search, insert and delete
performance in balanced trees, but insertion and deletion may
easily make the tree unbalanced.

AVL trees are BDTs which are approximately height-balanced: they can
be remarkably unbalanced, but the balance is always good enough
to guarantee O Nlg() search, insert and delete performance.

In detail AVL trees can be quite a bit more unbalanced than binary
trees, but they are never more than a constant factor (about 1.44)
worse than an optimally-balanced binary tree; they are a good
engineering tradeoff.

The main trick which A-V and L used to preserve approximate balance
on insertion or deletion was rotation or pointer swinging; it can
easily be made a simple O 1() operation.

18/9/2007 I2A 98 slides 10 47 Richard Bornat
Dept of Computer Science

B-trees use high branching ratios (large numbers of children per node)
to guarantee short path lengths, and are thus useful when access to
a node is much slower than access within a node.

B-trees are always perfectly height-balanced.

Deletion in a B-tree has to be able to move information from one child
to another, in order to preserve the high branching ratio.

